J9¾ÅÓΡ¤(¹ú¼Ê)ÕæÈËÓÎÏ·µÚһƷÅÆ

Äúµ±Ç°ËùÔÚλÖ㺠Ê×Ò³» È˲ŶÓÎé» ¸ß¼¶Ö°³Æ» ÖÇ»ÛÅ©ÒµÑо¿ÊÒ» Õý¸ß¼¶

ÀîÎľê

·¢²¼Õߣº¹ÜÀíÔ±·¢²¼Ê±¼ä£º2023-11-21×÷ÕߣºÀ´Ô´£ºµã»÷Á¿£º

image.png

ÀîÎľê£¬Å®£¬1986Äê12ÔÂÉú£¬¸ÊËàÊ¡À¼ÖÝÊÐÈË£¬²©Ê¿Éúµ¼Ê¦£¬Ñо¿Ô±£¬¡°ÇàÄêÓ¢²Å¼Æ»®¡±ÈëÑ¡Õß¡£Ö÷ÒªÑо¿·½ÏòÊÇ»ùÓÚ¿ÕÌìµØ¶àÔ´Ò£¸Ð¼¼ÊõµÄÅ©ÌïÖÇÄܼà²â¼¼Êõ¼°Ó¦Ó㬾ßÓзḻµÄ²úѧÑо­Ñé¡£ÒÑ·¢±íRemote Sensing of EnvironmentµÈÄÚÍâÆÚ¿¯ÂÛÎÄ20Óàƪ£¬µÚÒ»Íê³ÉÈËÊÚȨ¹ú¼Ò·¢Ã÷רÀû4Ïµ£ÈÎRemote Sensing of Environment¡¢Agricultural and forest meteorology¡¢IEEETransactions on Geoscience and Remote Sensing¡¢Computers and Electronics in AgricultureµÈSCIÆÚ¿¯Éó¸åÈË£¬Plant PhenomicsÇàÄê±àί¡¢Remote Sensingר¿¯±àί¡£

½ÌÓý¾­Àú:

2018.11 ¨C 2021.12   ·¨¹ú¹ú¼ÒũҵʳƷÓë»·¾³Ñо¿Ôº£¨INRAE£©/°¢Î¬ÄáÎÌ´óѧ, Å©ÒµÒ£¸Ðרҵ£¬Å©Ñ§²©Ê¿

2011.09 ¨C 2015.07  Öйú¿ÆѧԺ´óѧ£¬Öйú¿ÆѧԺµØÀí¿ÆѧÓë×ÊÔ´Ñо¿Ëù£¬Ö²±»¶¨Á¿Ò£¸Ðרҵ£¬Àíѧ²©Ê¿

2008.09 ¨C 2011.06   À¼ÖÝ´óѧ£¬²ÝµØÅ©Òµ¿Æ¼¼Ñ§Ôº£¬²ÝÒµµØÀíÐÅϢѧרҵ£¬Àíѧ˶ʿ

2004.09 ¨C 2008.07   ¶«±±Ê¦·¶´óѧ£¬µØͼѧÓëµØÀíÐÅϢϵͳרҵ£¬Àíѧѧʿ

¹¤×÷¾­Àú:

2022.01 ¨C  ÖÁ½ñ J9¾ÅÓΡ¤(¹ú¼Ê)ÕæÈËÓÎÏ·µÚһƷÅÆ£¬ÖÇ»ÛÅ©Òµ´´ÐÂÍŶÓ£¬Ñо¿Ô±

2017.09 ¨C 2021.12  ·¨¹úÅ©Òµ²¿Å©ÒµÒ£¸ÐÁªÃËÆóÒµHIPHEN£¬Ñз¢¿Æѧ¼Ò

2016.03 ¨C 2017.08  ·¨¹ú¹ú¼ÒũҵʳƷÓë»·¾³Ñо¿Ôº£¨INRAE£©£¬²©Ê¿ºó

2014.05 ¨C 2016.02  ·¨¹ú¹ú¼ÒũҵʳƷÓë»·¾³Ñо¿Ôº£¨INRAE£©£¬Ñз¢¹¤³Ìʦ

Ö÷Òª¿ÆÑÐÏîÄ¿:

1. µ¾ÌïÐÅÏ¢Ìì¿ÕµØÈÚºÏÓëÖÇÄܼà²â¼¼Êõ£¬Ê®ËÄÎå¹ú¼ÒÖصãÑз¢¼Æ»®¡°Ë®µ¾ÖÇ»ÛÅ©³¡¼¼Êõ´´ÐÂÓ뼯³Éʾ·¶¡±¿ÎÌ⣬2023YFD2300036£¬2023-10ÖÁ2028-09£¬¿ÎÌâÖ÷³Ö

2. ÑμîµØ¿ÕÌìµØÒ»Ì廯¿ìËÙʶ±ð¹Ø¼ü¼¼Êõ¼°²úÆ·£¬¹ú¼ÒÑμîµØ×ÛºÏÀûÓü¼Êõ´´ÐÂÖÐÐÄ¡°½Ò°ñ¹Ò˧¡±ÏîÄ¿£¬GYJ2023002£¬2023-11ÖÁ2026-11£¬ÏîÄ¿Ö÷³Ö

3. ¶àÄ£¿é×ۺϼ¯³ÉµÄÒƶ¯³µÔØÒ»Ì廯¶àÒªËØÊý¾Ý²É¼¯ºÍÖÇÄܹܿØϵͳ£¬Ê®ËÄÎå¹ú¼ÒÖصãÑз¢¼Æ»®¡°¸ß±ê׼ũÌïÌì¿ÕµØÒ»Ì廯Öǻۼà¹Ü¼¼ÊõÓëÓ¦Óá±×Ó¿ÎÌ⣬2022YFB3903501-5£¬2022-11-01ÖÁ2026-10-31£¬×Ó¿ÎÌâÖ÷³Ö

4. ¹Ë¼°ÐÛËëµÄÓñÃ×È«ÉúÓýÆÚLAIºÍfAPARÎÞÈË»úÒ£¸Ð·´ÑÝ·½·¨£¬¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÇàÄê¿Æѧ»ù½ðÏîÄ¿£¬42201388£¬2023-01-01 ÖÁ 2025-12-31£¬ÏîÄ¿Ö÷³Ö

5. Å©×÷Îï½á¹¹ºÍÉúÀíÉú»¯²ÎÊýµÄÎÞÈË»úÒ£¸ÐÌáÈ¡£¬ÖйúÅ©Òµ¿ÆѧԺ¿Æ¼¼´´Ð¹¤³ÌÇàÄêÓ¢²ÅÆô¶¯¾­·Ñ£¬ 2022-02 ÖÁ 2024-12£¬ÏîÄ¿Ö÷³Ö

6. ·¨¹ú¹ú¼ÒÖ²Îï±íÐÍѧ»ù´¡ÉèÊ©£¬·¨¹ú¹ú¼Ò¿ÆÑÐÊð£¬ÃæÏòδÀ´ÏîÄ¿£¬2013-01 ÖÁ 2024-12£¬¹Ç¸É

7. Å©ÒµÎïÁªÍø£¬ ·¨¹úÕþ¸®¼°µØÇøFUI£¬2018-08 ÖÁ 2021-08£¬¹Ç¸É

8. Sentinel-2Å©ÌïÒ£¸Ð²úÆ·P2S2-Crops£¬·¨¹úº½Ìì¾Ö£¬2016-01 ÖÁ 2018-12£¬¹Ç¸É

9. »ùÓÚÎÞÈË»ú³ÉÏñϵͳµÄÐÂÐÍ'¶Ëµ½¶Ë 'Å©Òµ×Éѯ·þÎñ£¬·¨¹úÕþ¸®¼°µØÇøFUI£¬2014-03 ÖÁ 2018-03£¬¹Ç¸É

10. Å·ÃËFP-7ÏîÄ¿Imagines£¬Å·ÃË£¬2012-11ÖÁ2016-01£¬¹Ç¸É

´ú±íÐÔѧÊõÂÛÎÄ:

1. Li, W.*, Weiss, M., Jay, S., Wei, S., Zhao, N., Comar, A., Lopez-Lozano, R., De Solan, B., Yu, Q., Wu, W.*, Baret, F., (2024). Daily monitoring of Effective Green Area Index and Vegetation Chlorophyll Content from continuous acquisitions of a multi-band spectrometer over winter wheat.  Remote Sensing of Environment , 300, 113883.

2. Liu, R., Li, P., Li, Z., Liu, Z., Li, W.*, & Liu, S.* (2023). Bio-Master: design and validation of a high-throughput biochemical profiling platform for crop canopies.  Plant Phenomics , accept.

3. Cai, Z., Hu, Q., Zhang, X., Yang, J., Wei, H., Wang, J., Zeng, Y., Yin, G., Li, W., You, L., Xu, B., Shi, Z., (2023). Improving agricultural field parcel delineation with a dual branch spatiotemporal fusion network by integrating multimodal satellite data.  ISPRS Journal of Photogrammetry and Remote Sensing , 205, 34¨C49.

4. Li, H., Yan, K., Gao, S., Ma, X., Zeng, Y., Li, W., Yin, G., Mu, X., Yan, G., Myneni, R.B., (2023). A Novel Inversion Approach for the Kernel-Driven BRDF Model for Heterogeneous Pixels.  Journal of Remote Sensing ,  3 , 0038.

5. Cai, Z., Hu, Q., Zhang, X., Yang, J., Wei, H., Wang, J., Zeng, Y., Yin, G., Li, W., You, L., Xu, B., Shi, Z., (2023). Improving agricultural field parcel delineation with a dual branch spatiotemporal fusion network by integrating multimodal satellite data.  ISPRS Journal of Photogrammetry and Remote Sensing ,  205 , 34¨C49.

6. Yu, Q., Duan, Y., Wu, Q., Liu, Y., Wen, C., Qian, J., Song, Q., Li, W., Sun, J., Wu, W., (2023). An interactive and iterative method for crop mapping through crowdsourcing optimized field samples.  International Journal of Applied Earth Observation and Geoinformation ,  122 , 103409.

7. Li, W.*, Weiss, M., Garric, B., Champolivier, L., Jiang, J., Wu, W., Baret, F., (2023). Mapping Crop Leaf Area Index and Canopy Chlorophyll Content Using UAV Multispectral Imagery: Impacts of Illuminations and Distribution of Input Variables.  Remote Sensing  15, 1539, 1-13.

8. Zou, D., Yan, K., Pu, J., Gao, S., Li, W., Mu, X., Knyazikhin, Y., Myneni, R.B., (2022). Revisit the Performance of MODIS and VIIRS Leaf Area Index Products from the Perspective of Time-Series Stability.  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  15, 8958¨C8973.

9. Wang, J., Lopez-Lozano, R., Weiss, M., Buis, S., Li, W., Liu, S., Baret, F., Zhang, J., (2022). Crop specific inversion of PROSAIL to retrieve green area index (GAI) from several decametric satellites using a Bayesian framework.  Remote Sensing of Environment  278, 113085.

10. Li, W.*, Comar, A., Weiss, M., Jay, S., Lopez-Lozano, R., Simon, M., Colombeau, G., Hemmerle, M., Baret, F., (2021). A double swath configuration for improving throughput and accuracy of trait estimate from UAV images.  Plant Phenomics , 2021, 2021: 1-11

11. Camacho, F., Fuster, B., Li, W., Weiss, M., Ganguly, S., Lacaze, R., Baret, F. (2021). Crop specific algorithms trained over ground measurements provide the best performance for GAI and fAPAR estimates from Landsat-8 observations.  Remote Sensing of Environment , 260, 112453

12. Li, W.*, Jiang, J., Baret, F., Comar, A., Hemmerle, M., Weiss, M., Madec, S., Tison, F., Burger, P., (2021). Impact of the reproductive organs on crop BRDF as observed from a UAV.  Remote Sensing of Environment , 259, 112433

13. Wojnowski, W., Wei, S., Li, W., Yin, T., Li, X.-X., Ow, G.L.F., Yusof, M.L.M., Whittle, A.J., (2021). Comparison of Absorbed and Intercepted Fractions of PAR for Individual Trees Based on Radiative TransferModel Simulations.  Remote Sensing,  13, 1069.

14. Li, W.*, Fang, H., Wei, S., Weiss, M., Baret, F., (2021). Critical analysis of methods to estimate the fraction of absorbed or intercepted photosynthetically active radiation from ground measurements: application to rice crops.  Agricultural and forest meteorology , 297, 108273

15. Jay, S., Comar, A., Benicio, R., Beauvois, J., Dutartre, D., Daubige, G., Li, W., Labrosse, J., Thomas, S., Henry, N., Weiss, M., Baret, F., (2020). Scoring Cercospora Leaf Spot on Sugar Beet: Comparison of UGV and UAV Phenotyping Systems.  Plant Phenomics , 2020, 1¨C18.

16. Fang, H., Zhang, Y., Wei, S., Li, W., Ye, Y., Sun, T., Liu, W., (2019). Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China.  Remote Sensing of Environment , 233, 111377

17. Fang, H., Liu, W., Li, W., Wei, S., (2018). Estimation of the directional and whole apparent clumping index (ACI) from indirect optical measurements.  ISPRS Journal of Photogrammetry and Remote Sensing , 144, 1¨C13

18. Li, W.*, Baret, F., Weiss, M., Buis, S., Lacaze, R., Demarez, V., Dejoux, J.-f., Battude, M., Camacho, F., (2017). Combining hectometric and decametric satellite observations to provide near real time decametric FAPAR product.  Remote Sensing of Environment , 200, 250-262

19. Li, W.*, Weiss, M., Waldner, F., Defourny, P., Demarez, V., Morin, D., Hagolle, O., Baret, F., (2015). A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and Landsat sensors: Evaluation of the Consistency and Comparison with Ground Measurements.  Remote Sensing , 7, 15494-15516

20. Li, W.*, Fang, H. (2015). Estimation of direct, diffuse, and total FPAR from Landsat surface reflectance data and ground-based estimates over six FLUXNET sites.  Journal of Geophysical Research: Biogeosciences , 120, 96-112

21. Waldner, F., Lambert, M.-J., Li, W., Weiss, M., Demarez, V., Morin, D., Marais-Sicre, C., Hagolle, O., (2015). Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series.  Remote Sensing , 7, 10400-10424

22. Fang, H., Li, W., Wei, S., Jiang, C. (2014). Seasonal variation of Leaf Area Index over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods.  Agricultural and forest meteorology , 198-199, 126-141

23. Fang, H., Li, W., Myneni, R.B. (2013). The impact of potential land cover misclassification on MODIS Leaf Area Index (LAI) estimation: A statistical perspective.  Remote Sensing , 5, 830-844

24. Fang, H., Jiang, C., Li, W., Wei, S., Baret, F., Chen, J.M., Garcia-Haro, J., Liang, S., etc (2013). Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties.  Journal of Geophysical Research: Biogeosciences , 118, 529-548

25. ÀîÎľê, ¾Å´ÎÁ¦, Ì·ÖÒºñ, ÂíÐùÁú, ³ÂÈ«¹¦ (2013). Çຣʡ²ÝµØÉú²úÁ¦¼°²ÝÐóƽºâ×´¿öÑо¿.  ×ÊÔ´¿Æѧ ,  34 (2) ,  367-372

26. ÀîÎľê, ÂíÐùÁú, ³ÂÈ«¹¦ (2009). Çຣʡº£¶«º£±±µØÇø²ÝµØ×ÊÔ´²úÁ¿Óë²ÝÐóƽºâÏÖ×´Ñо¿.  ²Ýҵѧ±¨ , 18 (5) ,  270

27.ÂíÐùÁú, ÀîÎľê, ³ÂÈ«¹¦ (2009). »ùÓÚ GIS Óë²ÝÔ­×ÛºÏ˳Ðò·ÖÀà·¨¶Ô¸ÊËàÊ¡²ÝµØÀàÐ͵Ļ®·Ö³õ̽.  ²ÝÒµ¿Æѧ , 26 (5) , 7-13

Ö÷ÒªÊÚȨרÀû:

1. ÀîÎľê; ÎâÎıó; ËÎÜç; ÓàÇ¿Òã ; Ò»ÖÖÆÀ¹ÀÓýÖÖÌï¼äСÇøÑùµØÖÊÁ¿µÄ·½·¨ºÍϵͳ, 2023-10-03, ÖÐ ¹ú, ZL202211410253.7

2. ÀîÎľê; ÎâÎıó; ÓàÇ¿Òã ; Ò»ÖÖÖ§³Ö¶àÐͺŶà¹âÆ×Ïà»úÊý¾ÝÈ«×Ô¶¯´¦ÀíµÄ·½·¨ºÍϵͳ, 2023-07-04, Öйú, ZL202211273396.8

3. ÀîÎľê; ÎâÎıó; ÓàÇ¿Òã; ËÎÜç ; Ò»ÖÖÈÚºÏÎïÁªÍøºÍÎÀÐÇÉú³Éʱ¿ÕÁ¬ÐøÅ©×÷Îï²ÎÊýµÄ·½·¨ºÍϵͳ, 2023-06-13, Öйú, ZL202211464074.1

4. ÀîÎľê; ÎâÎıó; ÓàÇ¿Òã ; Ò»ÖÖ»ùÓÚ΢Ð͹âÆ×ÒÇÁ¬Ðø¹Û²âÌáÈ¡Å©×÷ÎïÒ¶Ãæ»ýÖ¸ÊýºÍÒ¶ÂÌËغ¬Á¿µÄ·½·¨, 2022-12-27, Öйú, ZL202211314999.8

ÁªÏµ·½Ê½:

ͨÐŵØÖ·£º±±¾©Êк£µíÇøÖйشåÄÏ´ó½Ö12ºÅ£¬Çø»®Â¥117

ÁªÏµµç»°£º010-82108654

ÓÊÏ䣺liwenjuan01@dcdq168.com



¡º´òÓ¡¡»¡º¹Ø±Õ¡»